BTEC Sport Year 12-Unit 1 Learning aim E-The effects of exercise on the energy systems

What is the role of ATP in exercise?	What is the ATP-PC system?		What is the aerobic system?
	Anaerobic (doesn't ne	ed oxygen to produce energy)	
 Energy is needed for muscle fibres to contract 			Lasts for long periods of time (with oxygen)
 This comes from the breakdown of foods 	Used in sports where sudden and powerful movements are needed.		Aerobic site of reaction (mitochondria).
 ATP (adenosine triphosphate) is the energy 	Eg shot putt		Breakdown of carbohydrates and fat stores
currency of the body			Process of <mark>aerobic glycolysis</mark> , Krebs cycle, electron transport chain.
 Stores and releases chemical energy 	Only lasts for up to 10 seconds		Recovery time between a few hours and 2-3 days
Gives energy for immediate muscle contractions			Sports such as long distance running
	Muscle cells also contain creatine phosphate (high energy). When this		
	high energy bond is broken, the energy it releases is transferred to		What is aerobic glycolysis?
		TP	 First stage of aerobic metabolism (breakdown of food into
			energy)
Short term energy syst		<u>rstem?</u>	 Converts carbohydrates into pyruvic acid using oxygen
		tem	This requires 10 chemical reactions
	Anaerobic		Requires 2 molecules of ATP
	Longer and higher intensity activities than ATP-PC. Eg-400m		What is the krebs cycle?
ENERGY	Lasts 60-90 seconds		Takes place in the mitochondria
	ATP is made by breaking down glucose and glycogen through aerobic		The pyruvic acid is converted to citric acid
	glycolysis		• 2 molecules of ATP are produced with carbon dioxide
			(exhaled by the lungs) and hydrogen (used in the next
Energy is released by converting ATP to ADP (the			phase) as waste produce.
 Energy is released by converting ATP to ADP (the uncharged form) 			
ultilaiged form)			
E5 and E6			
How do the energy systems adapt to exercise?		How do the energy systems adapt to exerci	se? What other factors can affect energy systems?
A-Increased creatine stores		D-Increased use of fats as an energy store	A-Diabetes and hypoglycaemic attack
Interval training sessions will improve the ability to produce anaerobic energy. Your		• Fat is the primary energy source during	low • Glucose levels in the blood are too high
body will store more creatine which will improve the ATP-PC system.		intensity exercise	• Glucose cannot enter the cells to be used as fuel
B-increased tolerance to lactic acid		• Fat oxidation increases if exercise is for	a long • The glucose builds up in the blood and cannot
• Anaerobic training will make the muscles better at tolerating and clearing away		period as glycogen levels deplete	be used
lactic acid		A trained athlete can burn fat as a fuel b	because • Hypoglycaemia is a low level of glucose in the
The capillary network extends so there is more blood to supply the muscles		they have more efficient ways of delive	ring blood
with oxygen and nutrients		oxygen to the working muscles	
C-Aerobic energy system		E-Increased storage of glycogen and increased	sed B-Children's lack of lactate system
 Long term exercise will improve the ability to produce energy 		numbers of mitochondria	It is harder for children to remove lactic acid after
• Improvements in the cardiovascular system will allow for more oxygen to be			exercise. Therefore, it is recommended that they
taken to the muscles which is needed to produce ATP			exercise anaerobically.