Stage 9 Algebraic Proficiency: Basic

- Collecting like terms.
- Know that $x \times x=x^{2}$.
- Calculate with negative numbers.
- Know the grid method for multiplying two-digit numbers.
- Know the difference between an expression, an equation and a formula.
- Understand what an identity is.
- Know the difference between an equation and an identity.
- Expand double brackets.
- Factorise quadratic expressions.
- Show two algebraic expressions are equivalent.
- Create an expression or a formula to describe a situation.
- Identity-c. 1600, "sameness, oneness, state of being the same," from French identité
- Equation-"action of making equal" is from 1650s, from Latin aequationem say ee kway shun
- Equivalent
- Expand
- Factorise
- Formula
- Linear
- Quadratic
- Expression

Targets	Before Topic	After Topic
Understand what an identity is.		Teacher Mark
Multiply two linear expressions of the form $(\mathrm{x}+\mathrm{a})(\mathrm{x}+\mathrm{b})$.		
Multiply two linear expressions of the form $(\mathrm{ax}+\mathrm{b})(\mathrm{cx}+\mathrm{d})$.		
Expand expressions of the form $(\mathrm{x}+\mathrm{a})^{2}$.		
Factorise a quadratic expression of the form ax²$+\mathrm{bx}$.		
Factorise a quadratic expression of the form ax ${ }^{2}+\mathrm{bx}+\mathrm{c}$.		
Work out why two algebraic expressions are equivalent.		
Create a mathematical argument to show that two algebraic expressions are equivalent.		
Distinguish between situations that can be modelled by an expression or a formula.		
Create an expression or a formula to describe a situation.		

