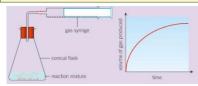
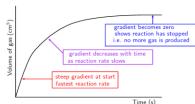
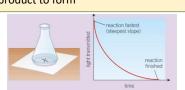
Measuring Rate


To measure the rate of a reaction you can:


- Measure how fast the reactants are used up
- Measure how fast the products are made
- Rate = change in mass/ volume ÷ time

e.g. Measure mass lost due to gas formed

e.g. Measure volume of gas made



Rate = volume of gas ÷ time

cm³/s

e.g. Measure time for insoluble product to form

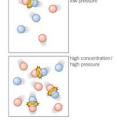
Collision theory

Rate of reaction and reversible reactions

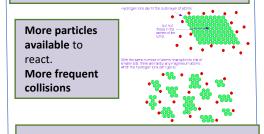
For a reaction to happen reactants must:

collide with enough energy (activation energy)

A successful collision is one that leads to a reaction

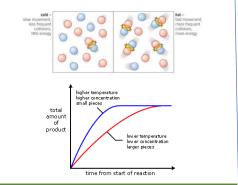

So to increase the rate of a reaction you must either

- Increase the frequency of collisions
- Increase the energy of the collisions
- Decrease the energy needed for a collision to be successful

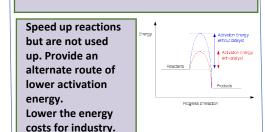

Factors affecting rate

Concentration and Pressure

More particles in the same volume.
More frequent collisions



Surface area

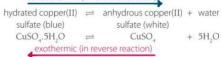


Temperature

Particles gain energy and so move faster.
So particles collide more frequently.
Particles collide with more energy.
So more of the collisions are successful.

Catalysts

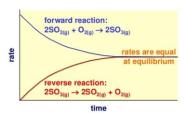
Reversible reactions


Can go in both directions.

Do not go to completion.

$$A + B \rightleftharpoons C + D$$

If a reaction is exothermic in one direction it is endothermic in the other direction.


endothermic (in forward reaction).

In a closed system (where no reactants or products can get in or out) an equilibrium is reached where the rate of reaction is the same in both directions.

At equilibrium:

- Rate of forward reaction = rate of reverse reaction.
- The concentration of products and reactants stays the same

